Overview of the Australian Protected Cropping Industry

Graeme Smith
Chairman – Protected Cropping Australia

Case for
National Centre for
Controlled Environment Horticulture
Australian Protected Cropping Industry

- Fastest growing food producing sector in Australia
- Valued at $1.3 billion farm-gate value per annum
- Equivalent to 20% of total value of vegetable and flower production
- Combining all sectors (retail, service providers, research, etc), industry contributes around $1.8 billion to the national economy
- Employs over 10,000 people throughout Australia
- Indirect employment multiplier (est. x 2) = 20,000+
- Industry expanding at 4 – 6% per annum
Australian Protected Cropping Industry

- Current investment in greenhouse vegetable infrastructure is conservatively valued at $975m (est. 1,300ha at $75/m2)
- Annual investment in new infrastructure valued at $50m over next 12 months (est. 25ha @ $200/m2)
- Major domestic retailers sending strong market signals to increase consumption (est. 20% for tomatoes), to 50% in next 5 – 8 years
- Woolworths have doubled consumption of greenhouse capsicums every year since 2005
Greenhouse Production Statistics (vegetables) - estimated

<table>
<thead>
<tr>
<th>State</th>
<th>Greenhouse Area (ha)</th>
<th>No of Growers</th>
</tr>
</thead>
<tbody>
<tr>
<td>QLD</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>NSW</td>
<td>500</td>
<td>680</td>
</tr>
<tr>
<td>VIC</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>SA</td>
<td>580</td>
<td>650</td>
</tr>
<tr>
<td>WA</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>TAS</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Totals</td>
<td>1341</td>
<td>1665</td>
</tr>
</tbody>
</table>
Greenhouse Production Statistics
(vegetables) - estimated

- 4,090 Australian Vegetable Farmers (AusVeg June 2008)
- 29% of all Australian vegetable growers farm in Protected Cropping
Greenhouse Production Statistics (cut flowers) - estimated

<table>
<thead>
<tr>
<th>State</th>
<th>Greenhouse Area (ha)</th>
<th>No of Growers</th>
</tr>
</thead>
<tbody>
<tr>
<td>QLD</td>
<td>19</td>
<td>112</td>
</tr>
<tr>
<td>NSW</td>
<td>12</td>
<td>170</td>
</tr>
<tr>
<td>VIC</td>
<td>36</td>
<td>135</td>
</tr>
<tr>
<td>SA</td>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>WA</td>
<td>23</td>
<td>94</td>
</tr>
<tr>
<td>TAS</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>Totals</td>
<td>101</td>
<td>587</td>
</tr>
</tbody>
</table>
Why Greenhouse?

- You can grow:

 any plant!

 anywhere!

 anytime!

Modern controlled production systems provide similar climate to native plant location
Why Greenhouse?

- Faster growth
- Higher yields
- Better quality
- Grow out of (& extend) seasons
- Grow foreign plants in local climate
- Pests can be excluded or controlled
- No weeds, no weeding, no herbicides
- Much reduced impact on the natural environment (significant reductions in herbicides, insecticides, fungicides, fertilisers, waste-water and land area)
- Higher outputs on significantly smaller footprints
- Delivers major energy & water efficiencies

by significantly improving the growing environment
Why Greenhouse?

- Closed systems can deliver near zero waste water all year round.
- Marginal land is generally not an issue.
- Controlled environment allows better use of IPM and beneficial insects with much reduced sprays.
- Higher Brix (sugar) levels delivers sweeter flavoursome fruit and longer shelf life.
- Year-round supply of consistent quality and quantity to meet consumers needs.
- Environmentally sound and responsible growing system.
- Able to produce local foods close to urban environments, keeping food miles low.
- Higher returns for farmers efforts. (compared to traditional annual vegetables)
Growing Population and Decreasing Arable Land Space

- 1 – usable world-wide agricultural land
- 2 – world population x 0.4ha (1 acre)
- a – culmination point if 0.4ha is required to feed one person
- b – culmination point if 0.2ha is required to feed one person
- c – culmination point if 0.1ha is required to feed one person
Energy Reserves, World Population & Food Production
Why Greenhouse?

The diagram illustrates the yields over time for various greenhouse conditions. The x-axis represents the years from 1970 to 2000, while the y-axis represents the yield in t/ha. Key notes include:

- **Heating**: Winter CO₂ enrichment
- **Hydroponics**: Integrated pest control
- **High stand**: Summer CO₂ enrichment
- **Computer control system**: Heated house (+ 6.4% p.a.)
- **Cold + heated house (+ 4.2% p.a.)
- **Cold house (+ 1.7% p.a.)

The best yield is indicated by a star. The trends show the incremental benefits of each added feature on yield.
Crop Productivity
Natural v Controlled Systems

Impact of Soil Disinfection

Relative Yield Increase

Biological Equilibrium
(maximum biodiversity)

Controlled Systems: (reduced biodiversity - less nutrient & water competition)
Why Hydroponics?

Greenhouse Production = Risk Mitigation
Risk Reduction in:
1. Adverse weather risk
2. Productivity risk
3. Quality risk
4. Food safety risk
5. Pest & disease risk
6. Financial risk
7. Employment risk
8. Water risk

Time to invest in safe agribusiness due to increasing global demand for high quality foods at a time of apparent global weather extremes that are acting to reduce reliable production.
Greenhouse v Field Production
Advantages & Efficiencies

<table>
<thead>
<tr>
<th>Crop</th>
<th>Tomatoes</th>
<th>Capsicum</th>
<th>Cucumber</th>
<th>Lettuce</th>
<th>Flowers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse (kg/m²)</td>
<td>76</td>
<td>30</td>
<td>100</td>
<td>80</td>
<td>95%</td>
</tr>
<tr>
<td>Field (kg/m²)</td>
<td>18</td>
<td>12</td>
<td>20</td>
<td>10</td>
<td>5%</td>
</tr>
<tr>
<td>Efficiency Gains (%)</td>
<td>422</td>
<td>250</td>
<td>500</td>
<td>800</td>
<td>Total</td>
</tr>
</tbody>
</table>

PCA
Water Use Efficiencies

<table>
<thead>
<tr>
<th>Agricultural Sector</th>
<th>Litres of Water per $100 of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>470,000</td>
</tr>
<tr>
<td>Cotton</td>
<td>160,000</td>
</tr>
<tr>
<td>Dairy – Milk</td>
<td>147,000</td>
</tr>
<tr>
<td>Sugar</td>
<td>123,900</td>
</tr>
<tr>
<td>Beef Cattle</td>
<td>81,200</td>
</tr>
<tr>
<td>Vegetables & Fruit</td>
<td>37,900</td>
</tr>
<tr>
<td>Wheat & Grain</td>
<td>24,500</td>
</tr>
<tr>
<td>Hydroponic Crops</td>
<td>As low as 600</td>
</tr>
</tbody>
</table>
Greenhouse V Field Tomato Production

CASE STUDY

<table>
<thead>
<tr>
<th></th>
<th>Field</th>
<th>Greenhouse</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (n.b. 1ha = 10,000m²)</td>
<td>1ha</td>
<td>1ha</td>
<td>0</td>
</tr>
<tr>
<td>Plant density (ave/m²)</td>
<td>1.1</td>
<td>2.2</td>
<td>100%</td>
</tr>
<tr>
<td>Total Plants</td>
<td>11,000</td>
<td>22,000</td>
<td>100%</td>
</tr>
<tr>
<td>Annual Production (kg)</td>
<td>69,231</td>
<td>585,000</td>
<td>845%</td>
</tr>
<tr>
<td>% 1st Grade</td>
<td>80+%</td>
<td>95+%</td>
<td>12%</td>
</tr>
<tr>
<td>Effective Production (1st grade kg)</td>
<td>58,846</td>
<td>555,750</td>
<td>944%</td>
</tr>
<tr>
<td>Effective Production (kg per m²)</td>
<td>5.9</td>
<td>55.6</td>
<td>944%</td>
</tr>
<tr>
<td>Effective Production (Kg per Plant)</td>
<td>5.3</td>
<td>25.3</td>
<td>472%</td>
</tr>
</tbody>
</table>
Greenhouse V Field Tomato Production

<table>
<thead>
<tr>
<th>CASE STUDY</th>
<th>Field</th>
<th>Greenhouse</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Use (*)</td>
<td>8M/L</td>
<td>14.5M/L</td>
<td>182%</td>
</tr>
<tr>
<td>Conversion Rate (grams fruit per litre water)</td>
<td>7.4</td>
<td>38.2</td>
<td>519%</td>
</tr>
<tr>
<td>Production per M/L (tonnes)</td>
<td>8.7</td>
<td>40.2</td>
<td>465%</td>
</tr>
<tr>
<td>Market Returns (gross)</td>
<td>$82,385</td>
<td>$1,667,250</td>
<td>2,024%</td>
</tr>
<tr>
<td>(g/1.40/kg)</td>
<td>($1.40/kg)</td>
<td>($3/kg)</td>
<td></td>
</tr>
<tr>
<td>Crop Length (months)</td>
<td>± 7</td>
<td>11.5</td>
<td>164%</td>
</tr>
<tr>
<td>Equivalent Field Production (Ha)</td>
<td>1</td>
<td>9.4</td>
<td>944%</td>
</tr>
</tbody>
</table>
Greenhouse V Field Tomato Production

- When reviewing the production figures, it appears on the surface that greenhouse production uses more water than field production, however it’s worth noting greenhouse production occurs over 11.5 months compared to ±7 months for field production.

- The greenhouse production figures also include all water used, not just that put on crops (i.e. fogging, roof sprinklers, hand washing, staff facilities, etc.).

- The important point is the conversion rate of water used to tomatoes produced, and it shows greenhouse production clearly in front (500%+).
Protected Cropping Industry Drivers

- **Safe Foods**
 Controlled production systems are able to more reliably offer products that meets both food security guidelines and the ever discerning needs of consumers.

- **High Quality**
 Products reliably scan out at 95%+ compared to field product of between 50 – 80%.
 High quality also delivers alternative packaging and presentation options with enhanced shelf-life.

- **Reliable Supply**
 12 months supply is available as climate variations are largely removed in protected cropping and this is highly prized by retail & wholesale customers.
Hydroponic Product Definition
(provides a point of product differentiation)

Produce that is grown in a soilless system or container, isolated from the ground, with all its nutrients in the feed water.

(AHGA 1999)
Return on Investment $ (industry estimates)

- Older technology
 3 – 5%

- Newer technology
 20 - 25%

(much higher than traditional annual vegetables)
System Types

- **Nutrient Film Technique**
 (lettuce, herbs, Asian vegetables, etc)
- **Flood & Drain**
 (nursery seedlings, potted plants, etc)
- **Aeroponic**
 (orchids, some leafy vegetables, etc)
- **Media Based**
 (vegetables, cut flowers, fruit, etc)
Older Greenhouse Technology
Greenhouse Technology
Greenhouse Technology
Greenhouse Equipment
Greenhouse Equipment
Greenhouse Equipment
Greenhouse Equipment
Greenhouse Growing System

Figure 2: Recirculation System

(*) eg. Tomatoes

Nutrient Recirculation (typically 40%)

Transfer Tank

Organic Filter

EC = 1.6*

A

B

Acid

EC = 1.0*

3-Way Valve

(Man or Auto)

Daily Batch Tank

EC = 2.6*

Raw Water Tank

Disinfection System

Recycle Tank

Drain Tank

Graeme Smith Consulting

C, December 2002
Common Greenhouse Crops

Fodder is grown in UV-stabilised, food quality PVC channels, using a NFT system.

Hydroponic green feed grows to a height of approximately 250-300mm.